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Casimir Torque for a Perfectly Conducting Wedge:
A Canonical Quantum Field Theoretical Approach
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The torque density per unit height exerted on a perfectly conducting wedge due to
the quantum vacuum fluctuations (the Casimir torque) is obtained by calculating the
vacuum-to-vacuum propagator (Green function) of a canonical quantum field.
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1. INTRODUCTION

More than a half-century after introducing the Casimir effect (Milton, 2001),
it is easy to find many works, including experiments, on the Casimir force for dif-
ferent geometrical shapes and media by different methods of calculation (Milton,
2001; Bordag et al., 2001). There are a few works on the geometry of wedge
shape (Brevik and Lygren, 1996; Brevik et al., 1998; Brevik and Pettersen, in
press; Nesterenko et al., 2002); some of them deal with the Green function
method (Brevik and Lygren, 1996; Brevik et al., 1998; Brevik and Pettersen,
in press).

The wedge geometry may be considered as a natural and one of the first
generalizations of the simple parallel plates geometry originally introduced by
Casimir (Casimir, 1948) in which the Casimir torque is experienced. This at-
tractive geometrical system because of its cylindrical symmetry may have useful
applications and counterparts in other parts of physics such as the cosmic string
space-time (Frolov and Serebriany, 1987).

As a first step toward realizing the “vacuum machine (vacuum engineer-
ing)” (Puthoff, 1997)4 and microelectromechanical devices (Serry et al., 1995;
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Chan et al., 2001a,b) that have been imagined, the wedge geometry should be
of special interest. This is because in any machine, rotation(s) and torque(s) are
present.

Here we first find the propagator (Green function) for a real scalar massless
field with the geometry of the perfectly conducting wedge with an angle β. Then we
calculate the vacuum-to-vacuum expectation value of the time-ordered product of
the scalar field operators at two space-time points. Finally, the energy–momentum
tensor and the desired Casimir torque are found. Clearly, by a simple multiplication
on 2 we shall arrive at the suitable result for the electromagnetic fields that have
two real degrees of freedom and this is the reason for working with scalar fields.
We should also mention that although this work is in a near and similar form
and result to the references (Brevik and Lygren, 1996; Brevik et al., 1998; Brevik
and Pettersen, in press), where all of them deal with dyadic and explicit forms of
the electric and magnetic fields; here, we work with the canonical quantum field
theory of real scalar massless fields with an approach based on and similar to the
method used in (Milton, 2001).

2. THE GREEN FUNCTION METHOD

The Green function method is a beautiful and powerful method based on
concepts and calculations from quantum field theory. In this method, to find the
Casimir force (torque), we find from one hand, a relation between the Green
function of a special (here a wedge) geometry and the vacuum expectation value
for the fields operators; and on the other hand, the relation between the vacuum
expectation value for the fields’ operators and the energy–momentum tensor is
found. As explained above, for the electromagnetic fields with two real degrees of
freedom, we can simply work with the real scalar massless fields that satisfy the
following Klein–Gordon equation (Mandl and Shaw, 1996)(

∇2 − 1

c2

∂2

∂t2

)
φ = 0 (1)

The corresponding equation for the time-dependent Green function (propagator)
is (

−∇2 + 1

c2

∂2

∂t2

)
G(�x, t, �x ′, t ′) = −δ(�x − �x ′)δ(t − t ′) (2)

From quantum theory of fields (Mandl and Shaw, 1996), we know that the fields’
propagator, with the condition of complex frequency rotation, is

G(�x, t, �x ′, t ′) = −i

hc
〈0|T φ(�x, t)φ(�x ′, t ′)|0〉 (3)
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in which 〈0|T φ(�x, t)φ(�x ′, t ′)|0〉 is the time-ordered product of fields to keep the
local (causal) property of theory.

The corresponding energy–momentum density tensor for the real scalar
massless fields is

T µν = ∂µφ∂νφ − 1/2gµν∂λφ∂λφ (4)

With a little algebra and by means of the fact that we can simply add a total
derivative to the Lagrangian (and also energy–momentum) density and by applying
the equation of motion (1), we arrive at the result (the metric signature used here
is g00 = −g11 = −g22 = −g33 = 1)

T ii = 1

2

∂φ

∂xi

∂φ

∂xi

(5)

Using (5) and (3), we find the important relation

〈T ii〉 = 1

2

∂

∂xi

∂

∂x ′
i

〈0|φ(x)φ(x ′)|0〉|x ′→x = hci

2

∂

∂xi

∂

∂x ′
i

G(x, x ′) (6)

where the complex frequency rotation should be considered. Note that i runs
through 1 to 3 and x = (�x, t), x ′ = (�x ′, t ′).

3. TIME-DEPENDENT GREEN FUNCTION (PROPAGATOR)
FOR A PERFECTLY CONDUCTING WEDGE
WITH AN OPENING ANGLE β

Assuming the boundary condition is of Dirichlet type, the desired Green
function in terms of the complete set of (sin, cos) eigenfunctions is

G(�x, t, �x ′, t ′) = 2

β

∞∑
m=1

∫
dωdk

(2π )2
e−ik(z−z′)e−iω(t−t ′)Rm(ρ, ρ ′)

× sin

(
mπϕ

β

)
sin

(
mπϕ′

β

)
(7)

in which Rm(ρ, ρ ′) satisfies

d2Rm

dρ2
+ 1

ρ

dRm

dρ
+

(
λ2 −

(
mπ

βρ

)2
)

Rm = 1

cρ
δ(ρ − ρ ′) (8)

where λ =
√

ω2

c2 − k2.
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With applying the boundary conditions and Wronskian relation for Bessel
functions (Jackson, 2000), one finds

G(�x, t, �x ′, t ′) = 1

2c2β

∞∑
m=1

sin

(
mπϕ

β

)
sin

(
mπϕ′

β

)

×
∫

dωdk
[
e−ik(z−z′)e−iω(t−t ′)Jυ(λρ<)Nν(λρ>)

]
(9)

where Jυ,Nυ functions are Bessel and Neumann functions respectively and
ρ>(ρ<) is the greater (smaller) one among ρ and ρ ′. Note that ν = mπ

β
.

In (9), the terms containing Jν(λρ>) and Nν(λρ<) have been omitted because
these functions diverge for ρ, ρ ′ → ∞, 0, respectively.

4. THE CASIMIR TORQUE FOR A PERFECTLY CONDUCTING
WEDGE WITH AN OPENING ANGLE β

To calculate this vacuum torque, we should at first find the vacuum expec-
tation value for the ϕϕ component of the energy–momentum density tensor at
ϕ = 0, β which is (by means of (6))

〈T ϕϕ|ϕ=0,β〉 = lim
hci

2ρ2

∂

∂ϕ

∂

∂ϕ′ G(�x, t, �x ′, t ′)
∣∣∣∣ �x ′→�x,t ′→t
ϕ′→ϕ→0,β

=
∞∑

m=1

hci

4πcβρ2

(
m2π2

β2

)

×
∫

dωdk cos2

(
mπϕ

β

) ∣∣
ϕ=0,β

[
Jmπ

β
(λρ)Nmπ

β
(λρ)

]
(10)

By considering the complex frequency rotation, the differential equation (8)
changes to the modified Bessel equation and the above result becomes

〈T ϕϕ|ϕ=0,β〉 =
∞∑

m=1

−πhi

4πβρ2

(
m2π2

β2

)∫
idωdk

[
Imπ

β
(λ′ρ)Kmπ

β
(λ′ρ)

]
(11)

where λ′ = 1
c

√
ω2c2 + k2 and Iυ,Kν are the modified Bessel functions of the first

and second kind, respectively.
By changing the rectangular to polar coordinates

∫
dωdk =

1
c

∫ 2π

0 dθ
∫ ∞

0 λ′dλ′, we find

〈T ϕϕ|ϕ=0,β〉 =
∞∑

m=1

πh

2βcρ2

(
m2π2

β2

) ∫ ∞

0
λ′[Imπ

β
(λ′ρ)Kmπ

β
(λ′ρ)

]
dλ′ (12)

Using the integral formula (Gradshteyn and Ryzhik, 1980)∫ ∞

0
λ′dλ′[Imπ

β
(λ′ρ)Kmπ

β
(λ′ρ)

] = lim
ξ→1

ξ
( mπ

β
)

ρ(1 − ξ 2)
(13)



Casimir Torque for a Perfectly Conducting Wedge 233

results in

〈T ϕϕ|ϕ=0,β〉 = lim
ξ→1

( ∞∑
m=1

πh

2βcρ3

(
m2π2

β2

))
ξ

( mπ
β

)

(1 − ξ 2)
(14)

To renormalize the above value for Tϕϕ , it is enough to subtract T ϕϕ|β=π from it.
This is because T ϕϕ|β=π is precisely the singular value that Tϕϕ would have if the
boundary were absent. Thus

〈T ϕϕ|ren.〉 = lim
ξ→1

[( ∞∑
m=1

πh

2βcρ3

(
m2π2

β2

)
ξ

( mπ
β

)

(1 − ξ 2)

)
−

( ∞∑
m=1

hm2

2cρ3

ξm

(1 − ξ 2)

)]

(15)

With some algebra, we arrive at the result

〈T ϕϕ|ren.〉 = hc

720π2ρ4

(
π2

β2
+ 11

)(
π2

β2
− 1

)
(16)

in which we have considered the multiplicative factor 2 explained in the introduc-
tion.

Now, we can find the desired torque density (per unit height) N

N = 1

ρ

∂

∂β
〈T ϕϕ|ren.〉 = −hc

360ρ5β3

(
2π2

β2
+ 10

)
(17)

where β = π is excluded because 〈T ϕϕ|ren.〉 is automatically zero for this value.

5. INTERPRETATION AND ASYMPTOTIC BEHAVIOR

The vacuum fluctuations due to the wedge boundary result in the torque
density per unit height (17) that shows there is an attraction between the two
plates of the wedge. The ρ−4 dependence in 〈T ϕϕ|ren.〉 is a general property of the
boundary effects in quantum field theory (Deutsch and Candelas, 1979).

Meanwhile, in the limit of β → 0 and ρ → ∞ such that ρβ = consant = d,
it can be shown that the energy density T00 (just as Tϕϕ here) approaches (− π2 hc

720d4 )
which is the same result as that of the two parallel plates separated by a distance
d originally introduced by Casimir (Casimir, 1948).
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